Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
نویسندگان
چکیده
The use of UV/ozone surface treatments for achieving low temperature bonds between PMMA and COC microfluidic substrates is evaluated. Low temperature bond strengths, approaching those of native polymer substrates bonded above their glass transition temperatures, are demonstrated for both thermoplastics. To evaluate the effects of the UV/O(3) surface treatment on the operation of bonded microfluidic devices, the relationship between UV/O(3) exposure and polymer hydrophilicity and surface chemistry are measured. Post-treatment surface chemistry is evaluated by XPS (X-ray photoelectron spectroscopy) analysis, and the stability of the treated surfaces following solvent exposure is reported. Electroosmotic flow within fabricated microchannels with modified wall surfaces is also characterized. Overall, UV/O(3) treatment is found to enable strong low temperature bonds between thermoplastic microfluidic substrates using a simple, low cost, and high throughput fabrication technology.
منابع مشابه
Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07435b
Thermoplastics are becoming a popular material for fabricating microfluidic devices and there is an increasing need for robust surface modification strategies. UV/ozone (UVO) treatment is a simple and effective method for making plastic surfaces more hydrophilic. Prior reports on the stability of UVO-treated plastics are limited to four weeks, which is not sufficient for applications requiring ...
متن کاملSolvent Processing of Pmma and Coc Chips for Bonding Devices with Optical Quality Surfaces
Many prototype microfluidic devices are manufactured by some form of micromachining or injection molding which often leaves poor quality surface. This work presents a simple method that both significantly reduces surface roughness of microfluidic chips and at the same time is used to bond devices. The method has been tested on devices made from poly(methyl methacrylate) (PMMA) and cyclic olefin...
متن کاملNano-Structure Roughening on Poly(Lactic Acid)PLA Substrates: Scanning Electron Microscopy (SEM) Surface Morphology Characterization
Scanningelectron microscopy (SEM) has been utilized to examine the morphology and topography alterations in the surface of Poly(Lactic Acid)(PLA) fabrics due to UV/Ozoneirradiation. In the past decade, a growing attention in the usage of “Green Techniques” in industrial applications has been observed owing to many benefits such as low impurities and their relatively low cost to substitute th...
متن کاملCharacterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding
In this study we fabricated a silicon-based stamp with various microchannel arrays, and demonstrated successful replication of the stamp microstructure on poly methyl methacrylate (PMMA) substrates. We used maskless UV lithography for the production of the micro-structured stamp. Thermal imprint lithography was used to fabricate microfeatured fluidic platforms on PMMA substrates, as well as to ...
متن کاملLow Temperature “click” Wafer Bonding of Off-stoichiometry Thiol-ene (oste) Polymers to Silicon
INTRODUCTION Common bonding techniques for lab-on-chip (LOC) microfluidic devices require surface bio-functionalization to be performed in-situ after the chip has been packaged due to the bio-incompatible features of the bonding technique, including high temperature requirements (e.g. thermal bonding of thermoplastics), use of organic solvents (e.g. PMMA bonding) or plasma activation (e.g. PDMS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2007